Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells.

نویسندگان

  • J E Thompson
  • S C Fry
چکیده

Xyloglucan endotransglycosylases (XETs) cleave and then re-join xyloglucan chains and may thus contribute to both wall-assembly and wall-loosening. The present experiments demonstrate the simultaneous occurrence in vivo of two types of interpolymeric transglycosylation: "integrational" (in which a newly secreted xyloglucan reacts with a previously wall-bound one) and "restructuring" (in which one previously wall-bound xyloglucan reacts with another). Xyloglucans synthesised by cultured rose (Rosa sp.) cells in "heavy" or "light" media (with [13C,2H]glucose or [12C,1H]glucose, respectively) had buoyant densities of 1.643 and 1.585 g ml-1, respectively, estimated by isopycnic centrifugation in caesium trifluoroacetate. To detect transglycosylation, we shifted heavy rose cells into light medium, then supplied a 2-h pulse of L-[1-3H]arabinose. Light [3H]xyloglucans were thus secreted into heavy, non-radioactive walls and chased by light, non-radioactive xyloglucans. At 2 h after the start of radiolabelling, the (neutral) [3H]xyloglucans were on average 29% heavy, indicating molecular grafting during integrational transglycosylation. The [3H]xyloglucans then gradually increased in density until, by 11 h, they were 38% heavy. This density increase suggests that restructuring transglycosylation reactions occurred between the now wall-bound [3H]xyloglucan and other (mainly older, i.e. heavy) wall-bound non-radioactive xyloglucans. Brefeldin A (BFA), which blocked xyloglucan secretion, did not prevent the increase in density of wall-bound [3H]xyloglucan (2-11 h). This confirms that restructuring transglycosylation occurred between pairs of previously wall-bound xyloglucans. After 7 d in BFA, the 3H was in hybrid xyloglucans in which on average 55% of the molecule was heavy. Exogenous xyloglucan oligosaccharides (competing acceptor substrates for XETs) did not affect integrational transglycosylation whereas they inhibited restructuring transglycosylation. Possible reasons for this difference are discussed. This is the first experimental evidence for restructuring transglycosylation in vivo. We argue that both integrational and restructuring transglycosylation can contribute to both wall-assembly and -loosening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xyloglucan undergoes interpolymeric transglycosylation during binding to the plant cell wall in vivo: evidence from 13C/3H dual labelling and isopycnic centrifugation in caesium trifluoroacetate.

Xyloglucan from the walls of Rosa cells that had been cultured on [12C]- or [13C]-glucose formed bands in caesium trifluoroacetate with mean buoyant densities of 1.575 or 1.616 g/ml respectively. Incubation of a mixture of [13C,3H]xyloglucan and [12C,1H]xyloglucan in the presence of xyloglucan endotransglycosylase (XET) activity caused the mean buoyant density of the radioactive material to dec...

متن کامل

Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding.

Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls via a transglycosylation mechanism. Thus, XET is a key enzyme in all plant processes that require cell wall remodeling. To provide a basis for detailed structure-function studies, the crystal structure of Populus tremula x tremuloides XET16A (PttXET16A), heterologously expressed in Pichia pastori...

متن کامل

Oxaziclomefone, a new herbicide, inhibits wall expansion in maize cell-cultures without affecting polysaccharide biosynthesis, xyloglucan transglycosylation, peroxidase action or apoplastic ascorbate oxidation.

BACKGROUND AND AIMS Oxaziclomefone (OAC), a new herbicide, inhibits cell expansion, especially in roots and cell-cultures of gramineous monocots. OAC does not affect turgor in cultured maize cells, and must therefore inhibit wall-loosening or promote wall-tightening. METHODS The effects of OAC in living cultured maize cells on various biochemical processes thought to influence wall extension ...

متن کامل

Kinetic evidence of the existence of a stable enzyme-glycosyl intermediary complex in the reaction catalyzed by endotransglycosylase.

Xyloglucan-endotransglycosylase (XET) is an enzyme involved in the metabolism of xyloglucan (XG) in plant cell walls and seeds. This enzyme acts both as a hydrolase and as a transglycosylase by transferring the fragments of xyloglucan molecules to other XG molecules or xyloglucan-derived oligosaccharides (XGOs). In this work, we studied the kinetics of interaction between XET and XG. The equili...

متن کامل

α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana

Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2001